Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 778
1.
Biomed Pharmacother ; 173: 116414, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460374

Drug-associated long-term memories underlie substance use disorders, including heroin use disorder (HUD), which are difficult to eliminate through existing therapies. Addictive memories may become unstable when reexposed to drug-related cues and need to be stabilized again through protein resynthesis. Studies have shown the involvement of histone acetylation in the formation and reconsolidation of long-term drug-associated memory. However, it remains unknown whether and how histone acetyltransferases (HAT), the essential regulators of histone acetylation, contribute to the reconsolidation of heroin-associated memories. Herein, we investigated the function of HAT in the reconsolidation concerning heroin-conditioned memory by using a rat self-administration model. Systemic administration of the HAT inhibitor garcinol inhibited cue and heroin-priming induced reinstatement of heroin seeking, indicating the treatment potential of garcinol for relapse prevention.


Heroin , Histones , Terpenes , Rats , Animals , Heroin/pharmacology , Histones/metabolism , Rats, Sprague-Dawley , Acetylation
2.
Neuroendocrinology ; 114(3): 207-222, 2024.
Article En | MEDLINE | ID: mdl-37848008

INTRODUCTION: Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects. Here, we hypothesize that inhibition of E2 signaling in the basolateral amygdala (BLA) will impair EMR of a heroin-associated cue in both male and female rats. METHODS: We pharmacologically manipulated E2 signaling to characterize the role of E2 in the BLA on heroin-cue EMR. Following heroin self-administration, during which a light/tone cue was co-presented with each heroin infusion, rats underwent cued extinction to extinguish the conditioned association between the light/tone and heroin. During extinction, E2 signaling in the BLA was blocked by an aromatase inhibitor or specific estrogen receptor (ER) antagonists. The next day, subjects underwent a cued test to assess heroin-cue EMR. RESULTS: In both experiments, females took more heroin than males (mg/kg) and had higher operant responding during cued extinction. Inhibition of E2 synthesis in the BLA impaired heroin-cue EMR in both sexes. Notably, E2s actions are mediated by different ER mechanisms, ERα in males but ERß in females. CONCLUSIONS: This study is the first to demonstrate a behavioral role for centrally-produced E2 in the BLA and that E2 also impacts EMR of reward-associated stimuli in both sexes.


Basolateral Nuclear Complex , Humans , Rats , Male , Female , Animals , Basolateral Nuclear Complex/physiology , Heroin/pharmacology , Cues , Extinction, Psychological/physiology , Recurrence
3.
Psychopharmacology (Berl) ; 241(1): 171-179, 2024 Jan.
Article En | MEDLINE | ID: mdl-37833541

RATIONALE: Previous studies have shown that gonadal hormones influence opioid self-administration in female rodents, but very few studies have examined these effects in male rodents. OBJECTIVES: The purpose of this study was to examine the effects of chronic hormone treatment on intravenous heroin self-administration in gonadectomized male rats using both physiological and supraphysiological doses of testosterone, estradiol, or progesterone. METHODS: Gonadectomized male rats were surgically implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. Using a between-subjects design, rats were treated daily with testosterone (0.175 or 1.75 mg, sc), estradiol (0.0005 or 0.005 mg, sc), progesterone, (0.0125 or 0.125 mg, sc), or their vehicles. After 14 days of chronic treatment, a dose-effect curve was determined for heroin (0.0003-0.03 mg/kg/infusion) over the course of one week. RESULTS: Neither testosterone nor estradiol altered responding maintained by heroin. In contrast, the high dose of progesterone (0.125 mg) reduced responding maintained by all doses of heroin to saline-control levels. This dose of progesterone did not reduce responding maintained by food on a progressive ratio schedule in either food-restricted or food-sated rats. CONCLUSIONS: These data indicate that exogenous progesterone or a pharmacologically active metabolite selectively decreases heroin intake in male rodents, which may have therapeutic implications for men with opioid use disorder.


Heroin , Progesterone , Humans , Rats , Male , Female , Animals , Heroin/pharmacology , Rats, Sprague-Dawley , Progesterone/pharmacology , Reinforcement Schedule , Estradiol/pharmacology , Testosterone/pharmacology , Self Administration
4.
Exp Clin Psychopharmacol ; 32(2): 158-172, 2024 Apr.
Article En | MEDLINE | ID: mdl-37535523

The present study used a rat choice model to test how cocaine or heroin economically interacted with two different nondrug reinforcers along the substitute-to-complement continuum. In Experiment 1, the nondrug alternative was the negative reinforcer timeout-from-avoidance (TOA)-that is, rats could press a lever to obtain a period of safety from footshock. One group of rats chose between cocaine and TOA and another group chose between heroin and TOA. The relative prices of the reinforcers were manipulated across phases while controlling for potential income effects. When cocaine was the reinforcer, rats reacted to price changes by increasing their allocation of behavior to the more expensive option, thereby maintaining relatively proportional intake of cocaine and TOA reinforcers across prices, suggesting these reinforcers were complements here. In contrast, when heroin became relatively cheap, rats increased allocation of income to heroin and decreased allocation of income to TOA, suggesting that heroin substituted for safety. Additionally, rats were willing to accept more footshocks when heroin was easily available. In Experiment 2, the nondrug alternative was saccharin, a positive reinforcer. Heroin and saccharin were complements, but there was no consistent effect of price changes on the allocation of behavior between cocaine and saccharin. As a model of the processes that could be involved in human drug use, these results show that drug-taking behavior depends on the type of drug, the type of nondrug alternative available, and the prices of both. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Cocaine , Heroin , Humans , Rats , Animals , Heroin/pharmacology , Saccharin/pharmacology , Choice Behavior , Self Administration , Cocaine/pharmacology
5.
J Pharmacol Exp Ther ; 388(2): 244-256, 2024 01 17.
Article En | MEDLINE | ID: mdl-37739803

The number of drug overdoses and deaths has increased significantly over the past decade and co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures, particularly methamphetamine, are not well characterized. Two structurally different drugs with agonist properties at µ-opioid receptors (MOR), fentanyl and heroin, and d-methamphetamine, alone and in mixtures, were assessed for their effects on ventilation in rats breathing normal air. Whole-body phethysmography chambers were equipped with a tower and swivel allowing infusions to indwelling intravenous catheters. After a 45-minute habituation period, saline, fentanyl, heroin, or d-methamphetamine, alone and in mixtures, was administered. Five minutes later, the opioid receptor antagonist naloxone or vehicle was injected. Fentanyl (0.0032-0.1 mg/kg) and heroin (0.32-3.2 mg/kg) decreased ventilation [frequency (f) and tidal volume (VT)] in a dose-related manner whereas d-methamphetamine (0.1-3.2 mg/kg) increased f to >400% of control and decreased VT to <60% of control, overall increasing minute volume (product of f and VT) to >240% of control. When combined, d-methamphetamine (0.1-3.2 mg/kg) attenuated the ventilatory depressant effects of fentanyl (0.1 mg/kg) and heroin (3.2 mg/kg). d-Methamphetamine did not alter the potency of naloxone to reverse the ventilatory depressant effects of fentanyl or heroin. These studies demonstrate that d-methamphetamine can attenuate the ventilatory depressant effects of moderate doses of opioid receptor agonists while not altering the potency of naloxone to reverse opioid hypoventilation. SIGNIFICANCE STATEMENT: Co-use of opioids and stimulants is associated with greater likelihood of overdose and decreased likelihood of accessing treatment, compared with use of opioids alone. Potential adverse effects of opioid/stimulant mixtures are not well characterized. This study reports that 1) d-methamphetamine attenuates the ventilatory depressant effects of moderate doses of two structurally different opioid receptor agonists, fentanyl and heroin, and 2) d-methamphetamine does not alter potency or effectiveness of naloxone to reverse the ventilatory depressant effects of these opioid receptor agonists.


Drug Overdose , Methamphetamine , Male , Animals , Rats , Heroin/pharmacology , Fentanyl/adverse effects , Analgesics, Opioid/adverse effects , Methamphetamine/pharmacology , Naloxone , Drug Overdose/drug therapy , Receptors, Opioid
6.
J Neurosci Methods ; 402: 110013, 2024 02.
Article En | MEDLINE | ID: mdl-37989452

BACKGROUND: Despite extensive human use of inhalation for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. NEW METHOD: Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. RESULTS: Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. COMPARISON WITH EXISTING METHODS: Inhalation of directly volatilized heroin successfully produces heroin-typical effects, comparable to EDDS inhalation delivery. CONCLUSIONS: This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into the middle age of rats.


Electronic Nicotine Delivery Systems , Heroin , Humans , Middle Aged , Rats , Male , Female , Animals , Heroin/pharmacology , Naloxone/pharmacology , Narcotic Antagonists , Camphor , Menthol , Water , Self Administration
7.
Neuron ; 112(5): 772-785.e9, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38141605

Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of µ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.


Heroin , Opioid-Related Disorders , Rats , Mice , Animals , Heroin/pharmacology , Rats, Sprague-Dawley , Self Administration/methods , Neurons , Nucleus Accumbens/physiology
8.
Bioconjug Chem ; 35(2): 164-173, 2024 02 21.
Article En | MEDLINE | ID: mdl-38113481

Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qß (mQß), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQß-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQß-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQß-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.


Analgesics, Opioid , Heroin , Mice , Animals , Analgesics, Opioid/pharmacology , Heroin/chemistry , Heroin/pharmacology , Morphine , Morphine Derivatives , Immunoglobulin G
9.
Int J Neuropsychopharmacol ; 26(12): 828-839, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37864842

BACKGROUND: There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS: Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS: Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS: Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.


Corticotropin-Releasing Hormone , Heroin , Rats , Animals , Corticotropin-Releasing Hormone/metabolism , Heroin/pharmacology , Heroin/metabolism , Dopamine/metabolism , Ventral Tegmental Area , Self Administration , Recurrence , RNA, Messenger/metabolism
10.
Sci Rep ; 13(1): 12614, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537211

It has been proposed that opiates modulate memory consolidation, but recent work has indicated that this effect may be mediated by how the drug is experienced (i.e., passive injections vs. self-administration). Because the dopamine (DA) D1 receptor is involved in processing of learning signals and attribution of salience to events experienced by an organism, two studies in male Sprague-Dawley rats tested the effect of blocking this receptor on modulation of memory consolidation by passive and self-administered heroin, in addition to conditioned memory modulation by heroin-paired cues. Using the object location memory task, Study 1 employed SCH23390 (0, 0.05, 0.10 mg/kg, SC) to modulate enhancement of memory consolidation induced by post-training injections of heroin (1 mg/kg, SC) as well as by exposure to the environment paired with heroin injections (6 pairings, 1 h each, 1 mg/kg). Study 2 was conducted in rats that could self-administer heroin (0.05 mg/kg/infusion, IV) and tested whether SCH23390 (0 and 0.1 mg/kg, SC) could prevent memory modulation induced by a change in schedule of self-administration (from fixed to variable ratio). It was found that while repeated passive injections of heroin retained their enhancing effect on memory, when self-administered, heroin enhanced consolidation of object location memory only at the beginning of self-administration and after a change in schedule. Importantly, SCH23390 blocked memory modulation by heroin when passively administered and when the drug was self-administered on a novel schedule. SCH23390 also blocked conditioned memory modulation induced by post-training exposure to heroin-paired cues. Taken together, these results suggest that modulation of memory consolidation by unconditioned and conditioned opiate reinforcers involve a D1-dependent mechanism of salience attribution linked to the anticipation of drug effects.


Heroin , Memory Consolidation , Rats , Male , Animals , Heroin/pharmacology , Rats, Sprague-Dawley , Conditioning, Operant , Receptors, Dopamine D1 , Self Administration
11.
Addict Biol ; 28(9): e13326, 2023 09.
Article En | MEDLINE | ID: mdl-37644892

The persistence of maladaptive heroin-associated memory, which is triggered by drug-related stimuli that remind the individual of the drug's pleasurable and rewarding effects, can impede abstinence efforts. Cyclin-dependent kinase 5 (Cdk5), a neuronal serine/threonine protein kinase that plays a role in multiple neuronal functions, has been demonstrated to be involved in drug addiction and learning and memory. Here, we aimed to investigate the role of cdk5 activity in the basolateral amygdala (BLA) in relapse to heroin seeking, using a self-administration rat model. Male rats underwent 10 days of heroin self-administration training, during which an active nose poke resulted in an intravenous infusion of heroin that was accompanied by a cue. The rats then underwent nose poke extinction for 10 days, followed by subsequent tests of heroin-seeking behaviour. We found that intra-BLA infusion of ß-butyrolactone (100 ng/side), a Cdk5 inhibitor, administered 5 min after reactivation, led to a subsequent decrease in heroin-seeking behaviour. Further experiments demonstrated that the effects of ß-butyrolactone are dependent on reactivated memories, temporal-specific and long-lasting on relapse of heroin-associated memory. Results provide suggestive evidence that the activity of Cdk5 in BLA is critical for heroin-associated memory and that the specific inhibitor, ß-butyrolactone, may hold potential as a substance for the treatment of heroin abuse.


Basolateral Nuclear Complex , Heroin , Male , Animals , Rats , Heroin/pharmacology , Cyclin-Dependent Kinase 5 , Recurrence
12.
Cells ; 12(14)2023 07 08.
Article En | MEDLINE | ID: mdl-37508477

Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.


Acetylcysteine , Heroin , Rats , Animals , Male , Rats, Sprague-Dawley , Heroin/pharmacology , Acetylcysteine/pharmacology , Astrocytes , Synapses , Glutamates , Recurrence
13.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Article En | MEDLINE | ID: mdl-37344602

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Heroin , Morphine , Mice , Animals , Heroin/metabolism , Heroin/pharmacology , Morphine/metabolism , Analgesics, Opioid/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Brain/metabolism , Morphine Derivatives/metabolism , Morphine Derivatives/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Mice, Knockout
14.
J Integr Neurosci ; 22(3): 76, 2023 May 16.
Article En | MEDLINE | ID: mdl-37258429

PURPOSE: Opioid use disorder is a significant global problem. Chronic heroin use is associated with impairment of cognitive function and conscious control ability. The cholinergic system can be disrupted following heroin administration, indicating that activation of the cholinergic system may prevent chronic heroin misuse. Donepezil as an inhibitor of cholinesterase has been reported to clinically improve cognition and attention. In this study, the inhibition of heroin self-administration and heroin-seeking behaviours by donepezil were evaluated in rats. METHODS: Rats were trained to self-administer heroin every four hours for 14 consecutive days under a fixed ratio 1 (FR1) reinforcement schedule, then underwent withdrawal for two weeks. A progressive ratio schedule was then used to evaluate the relative motivational value of heroin reinforcement. After withdrawal, a conditioned cue was introduced for the reinstatement of heroin-seeking behaviour. Donepezil (0.3-3 mg/kg, i.p.) was used during both the FR1 heroin self-administration and progressive ratio schedules. Immunohistochemistry was used to investigate the mechanism of action of donepezil in the rat brain. RESULTS: Pre-treatment with high dose donepezil (3 mg/kg) but not low doses (0.3-1 mg/kg) significantly inhibited heroin self-administration under the FR1 schedule. Donepezil decreased motivation values under the progressive ratio schedule in a dose-dependent manner. All doses of donepezil (1-3 mg/kg) decreased the reinstatement of heroin seeking induced by cues. Correlation analysis indicated that the inhibition of donepezil on heroin-seeking behaviour was positively correlated with an increased expression of dopamine receptor 1 (D1R) and dopamine receptor 2 (D2R) in the nucleus accumbens (NAc) and increased expression of choline acetyltransferase (ChAT) in the ventral tegmental area (VTA). CONCLUSIONS: The present study demonstrated that donepezil could inhibit heroin intake and heroin-seeking behaviour. Further, donepezil could regulate dopamine receptors in the NAc via an increase of acetylcholine. These results suggested that donepezil could be developed as a potential approach for the treatment of heroin misuse.


Heroin Dependence , Nootropic Agents , Rats , Animals , Heroin/pharmacology , Heroin/therapeutic use , Donepezil/pharmacology , Cues , Nootropic Agents/pharmacology , Conditioning, Operant , Heroin Dependence/drug therapy , Heroin Dependence/psychology , Rats, Sprague-Dawley , Receptors, Dopamine , Cholinergic Agents/therapeutic use , Extinction, Psychological
15.
Neurosci Bull ; 39(11): 1655-1668, 2023 Nov.
Article En | MEDLINE | ID: mdl-37040055

Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.


Analgesics, Opioid , Behavior, Addictive , Rats , Mice , Animals , Dopamine , Heroin/pharmacology , Dopamine Antagonists/pharmacology , Receptors, Dopamine D3/metabolism , Morphine/pharmacology , Behavior, Addictive/drug therapy , Self Administration
16.
Pharmacol Biochem Behav ; 224: 173535, 2023 03.
Article En | MEDLINE | ID: mdl-36907467

Opioid use disorder (OUD) is a chronic disease characterized by compulsive opioid taking and seeking, affecting millions of people worldwide. The high relapse rate is one of the biggest challenges in treating opioid addiction. However, the cellular and molecular mechanisms underlying relapse to opioid seeking are still unclear. Recent studies have shown that DNA damage and repair processes are implicated in a broad spectrum of neurodegenerative diseases as well as in substance use disorders. In the present study, we hypothesized that DNA damage is related to relapse to heroin seeking. To test our hypothesis, we aim to examine the overall DNA damage level in prefrontal cortex (PFC) and nucleus accumbens (NAc) after heroin exposure, as well as whether manipulating DNA damage levels can alter heroin seeking. First, we observed increased DNA damage in postmortem PFC and NAc tissues from OUD individuals compared to healthy controls. Next, we found significantly increased levels of DNA damage in the dorsomedial PFC (dmPFC) and NAc from mice that underwent heroin self-administration. Moreover, increased accumulation of DNA damage persisted after prolonged abstinence in mouse dmPFC, but not in NAc. This persistent DNA damage was ameliorated by the treatment of reactive oxygen species (ROS) scavenger N-acetylcysteine, along with attenuated heroin-seeking behavior. Furthermore, intra-PFC infusions of topotecan and etoposide during abstinence, which trigger DNA single-strand breaks and double-strand breaks respectively, potentiated heroin-seeking behavior. These findings provide direct evidence that OUD is associated with the accumulation of DNA damage in the brain (especially in the PFC), which may lead to opioid relapse.


Analgesics, Opioid , Heroin , Mice , Animals , Heroin/pharmacology , Nucleus Accumbens , Prefrontal Cortex , Recurrence , Self Administration
17.
Proc Natl Acad Sci U S A ; 120(7): e2210953120, 2023 02 14.
Article En | MEDLINE | ID: mdl-36745812

Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.


Cocaine , Heroin , Mice , Animals , Mice, Transgenic , Heroin/metabolism , Heroin/pharmacology , Cocaine/pharmacology , Reinforcement, Psychology , Drug-Seeking Behavior/physiology , Epigenesis, Genetic , Nucleus Accumbens/physiology , Self Administration
18.
Drug Alcohol Depend ; 244: 109799, 2023 03 01.
Article En | MEDLINE | ID: mdl-36774806

BACKGROUND: Treatment strategies that aim to promote abstinence to heroin use and reduce vulnerability to drug-use resumption are limited in sustainability and long-term efficacy. We have previously shown that environmental enrichment (EE), when implemented after drug self-administration, reduces drug-seeking and promotes abstinence to cocaine and heroin in male rats. Here, we tested the effects of EE on abstinence in an animal conflict model in males and females, and after periods where incubation of craving may occur. METHODS: Male and female rats were trained to self-administer heroin followed by 3 or 21 days of a no-event-interval (NEI). Following NEI, rats were permanently moved to environmental enrichment (EE) or new standard (nEE) housing 3 days prior to resuming self-administration in the presence of an electric barrier adjacent to the drug access lever. Electric barrier current was increased daily until rats ceased self-administration. RESULTS: We found that 21 days of NEI led to significantly greater heroin self-administration and a trend toward shorter latencies to emit the first active lever press in the first abstinence session compared to 3 days of NEI. EE, when compared to nEE, led to longer latencies in the first abstinence session. Also, EE groups of both sexes and in both NEIs achieved abstinence criteria in significantly fewer numbers of sessions. CONCLUSIONS: EE facilitates abstinence in males and females and after periods where incubation of craving may occur. This suggests that EE may benefit individuals attempting to abstain from heroin use and may aid in the development of long term treatment strategies.


Cocaine , Heroin Dependence , Rats , Male , Female , Animals , Heroin/pharmacology , Craving , Rats, Sprague-Dawley , Cocaine/pharmacology , Self Administration , Cues
19.
Addict Biol ; 28(2): e13265, 2023 02.
Article En | MEDLINE | ID: mdl-36692872

Carfentanil, as a fentanyl analogue, is a potent synthetic opioid. It has been controlled in many countries, and its emergence has been highlighted by many recent reports. However, although discriminative stimulus effects of carfentanil in rats had been reported, its abuse potential has not been fully evaluated. In this study, we evaluated the abuse potential of carfentanil via the tests of conditioned place preference (CPP), drug self-administration and naloxone-precipitated opioid withdrawal assay, compared with fentanyl and heroin. Carfentanil exhibited significant place preference at a minimum dose of 1 µg/kg in mice, whereas fentanyl and heroin induced significant place preference at the minimum doses of 100 µg/kg and 1000 µg/kg, respectively. In the drug-substitution test in heroin self-administered rats (50 µg/kg/infusion), carfentanil and fentanyl acquired significant self-administrations above saline levels from 0.05-0.1 and 0.1-10.0 µg/kg/infusion, respectively. Carfentanil induced the maximum number of infusions at 0.1 µg/kg, whereas fentanyl and heroin at 1 and 25 µg/kg, respectively. In short, carfentanil showed the highest potency to induce CPP and self-administration. Furthermore, repeated treatment with escalating doses of carfentanil, fentanyl or heroin induced typical withdrawal symptoms in mice, including a greater number of jumping and weight loss than saline group. This indicated that carfentanil could produce physical dependence similar to fentanyl and heroin. Taken together, the present study demonstrated the higher abuse potential of carfentanil compared with fentanyl and heroin. The rank order of abuse potential for these compounds is carfentanil > fentanyl > heroin.


Analgesics, Opioid , Substance Withdrawal Syndrome , Rats , Mice , Animals , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Heroin/pharmacology , Fentanyl/pharmacology , Naloxone/therapeutic use , Substance Withdrawal Syndrome/drug therapy
20.
Neuroendocrinology ; 113(11): 1112-1126, 2023.
Article En | MEDLINE | ID: mdl-36709749

INTRODUCTION: There are numerous pharmacologic treatments for opioid use disorder (OUD), but none that directly target the underlying addictive effects of opioids. Oxytocin, a peptide hormone produced in the paraventricular nucleus (PVN) of the hypothalamus, has been investigated as a potential therapeutic for OUD. Promising preclinical and clinical results have been reported, but the brain region(s) and mechanism(s) by which oxytocin impacts reward processes remain undetermined. METHODS: Here, we assess peripherally administered oxytocin's impacts on cued reinstatement of heroin seeking following forced abstinence and its effects on neuronal activation in the PVN and key projection regions. We also examine how designer receptors exclusively activated by designer drug (DREADD)-mediated activation or inhibition of oxytocinergic PVN neurons alters cued heroin seeking and social interaction. RESULTS: As predicted, peripheral oxytocin administration successfully decreased cued heroin seeking on days 1 and 30 of abstinence. Oxytocin administration also led to increased neuronal activity within the PVN and the central amygdala (CeA). Activation of oxytocinergic PVN neurons with an excitatory (Gq) DREADD did not impact cued reinstatement or social interaction. In contrast, suppression with an inhibitory (Gi) DREADD reduced heroin seeking on abstinence day 30 and decreased time spent interacting with a novel conspecific. DISCUSSION: These findings reinforce oxytocin's therapeutic potential for OUD, the basis for which may be driven in part by increased PVN-CeA circuit activity. Our results also suggest that oxytocin has distinct signaling and/or other mechanisms of action to produce these effects, as inhibition, but not activation, of oxytocinergic PVN neurons did not recapitulate the suppression in heroin seeking.


Oxytocin , Paraventricular Hypothalamic Nucleus , Oxytocin/pharmacology , Heroin/pharmacology , Hypothalamus , Brain
...